Biomass Supply on the Plumas National Forest

FOREST SERVICE
UAS

FINENT OF AGRICUS

Opportunities and Challenges

Topics

- Why biomass is important to the Forest Service
- Biomass production on the PNF: historical, planned, potential
- Challenges to biomass removal
- Opportunities
- Desired condition

Why Biomass? It's about Ecological Restoration

- May 2010: Regional Forester letter outlining Leadership Intent for Ecological Restoration
 - Goal for Region 5 to "retain and reestablish ecological resilience of these lands to achieve sustainable management on our wildlands and forests and provide a broad range of ecosystem services.
 - "... achieve a collaborative and financially supported effort among forest land management agencies, private landowners, and the public to implement a large scale restoration program to accelerate the scale and pace of forest stewardship activities on both public and private lands."

Ecological Restoration

FOREST SERVICE

UAS

TIMENT OF AGRICUS

 Managing for the future: increasing the resiliency of forested ecosystems to withstand climate change, insects/disease, and

wildfire

Importance of Biomass to Ecological Restoration

- Urgent need to treat small-diameter fuels
 - Wildlife habitat
 - Watershed health
 - Water quality: Feather River watershed is crucial to California's water supply
 - Public safety and protection of property

Biomass Supply on the Plumas National Forest

- Tahoe Region CROP Study 2007
 - Plumas National Forest contributed 37% of 5-year total for the Tahoe Region 2002-2006: 194,375 gT (avg. = 38,875/yr) second only to the El Dorado NF
 - 8 National Forests + BLM and State lands analyzed
- Actual awarded biomass volume 2002 through 2009: 303,000 gT/avg. = 37,875/yr
- Projections for 2010 2012, current Program of Work: over 460,000 gT, with additional projects in the pipeline for 2013 and beyond.

The supply is out there, but....

- Is the annual output reasonably level and reliable?
- Is it economical?
- Is there demand?
- Is there infrastructure for harvest, transportation and processing?

- Dependable annual supply is an issue
- 2002-2009 awarded biomass ranged from a high of 123,500 gT (2005) to a low of 672 (2009)
- Factors in uneven supply:
 - Market/economics
 - Litigation
- Key litigation point in Sierra Nevada is removal of large trees (>20" DBH), not biomass, but sawlogs are needed to help economics of a project due to low value of biomass
 - Low value = high treatment costs = fewer acres treated
 - Some national environmental groups oppose biomass product removal from National Forests

- Economics: example
 - Biomass sale with 20 gT/acre
 - Appraisal cost: \$800-\$1,000 per acre to cut, skid,
 chip and haul
 - Product value only pays about half of this
 - Transportation costs: haul distance is key
 - Sawlogs can subsidize removal of biomass
 - Limited by market conditions and litigation
 - Relying on sawlogs may not always get us to the small fuels that most urgently need treatment

Transportation

- Only 3 percent to biomass volume on the Plumas lack existing road access (CROP study). However:
 - This does not take into account steep terrain and road conditions
- Many areas are not accessible without road reconstruction or realignment to accommodate traditional chip vans
- Long haul distances for many projects on PNF lands
- Transportation is part of the "green energy" challenge: do biomass projects replace more fossil fuels than they use?

Infrastructure

— Can additional facilities decrease transportation costs, increase options for biomass utilization and still maintain existing facilities?

Opportunities

- Increased interest (and funding opportunities) locally/regionally/nationally
- Near-term: plans to test alternative transportation vehicles locally
- Feasibility studies for biomass utilization technologies in Plumas and Butte Counties, from compost to biofuels
- Multiple opportunities for collaboration and partnerships

Desired Condition

- Healthy Forests
- Healthy Watersheds
- Healthy Communities
 - Jobs!
- Clean Water
- Reduced Wildfire Risk

